消費者のリスク認識 一食品を介した放射性物質の健康への影響ー

連続シンポジウム第8回 食品の放射性物質汚染を考える 2011年10月14日

> 京都大学農学研究科 新山陽子

本日の話題提供

リスクコミュニケーション調査から:

- □ 消費者のリスク認知の状態、消費者の必要とする情報について
- ロ リスクコミュニケーションの進め方について

前置き:

放射性物質の健康影響:

- きわめてセンシティブな問題 (個人の価値の中心に近い)
- 多くの人が意見や信念をもつ(信念を守りたい)
- 多くの人が、それぞれのやり方で情報を収集し、分析している
- メディアから大量の情報(まとまった情報、必要な情報、事態の理解を助ける情報がない)
- 疑問の種は尽きない(日々の生活場面、次の新たな疑問)

リスクコミュニケーション調査の課題と考え方

■ 探索課題

- 1. 消費者のリスク知覚、求める情報(内容、形態)
- 2. 効果的なリスクコミュニケーションの方法

小グループ、連続コミュ ニケーションの実施

■コミュニケーションの考え方

- 1. 双方向の密なコミュニケーション
 - > 説得を目的にしない
 - ▶ コミュニケーターと参加消費者は、相対の質疑はしない
 - ✓ グループディスカッションは参加者自身で進める
 - 参加者どうしの議論により、情報を受け止める
 - ✓ 複数の目で、情報を吟味する → より深い吟味
 - ✓ 受け止め方の違いを知る
 - ✓ 自分の見方を相対化できるようにする

情報作成

情報 提供

グループ ディスカッ ション

疑問点 の抽出 情報 作成

情報 提供 グループ ディスカッ ション

⑤京都大学農学研究科 新山陽子

リスクコミュニケーション調査の課題と考え方

- 2. 情報作成の視点 (大学・研究機関の場合)
 - ① 伝えたいこと
 - ▶ 科学的に解明された事象(影響)の起こるメカニズム
 - ▶ (影響の大きさの)判断の根拠となるデータ
 - データがありわかっているところ、データが不足しわかっていないところはどこか
 - ② 消費者の疑問に答える情報の作成
 - ③ 専門家の協力による情報作成

日常生活のなかで曝されるメディアの情報を、吟味し判断する力を 高められるような情報を提供する

※ リスクに対する態度は人によって異なる

リスクコミュニケーションの考え方と留意点 (これまでの文献・研究から)

- ■リスク情報の共有と意思疎通の考え方
 - ・一方向(公から民へ) → 双方向
 - 説得 → 相互理解(一致しなくてもよい)
 - ・選択された情報 → 可能な限りすべてを共有

(FAO/WHO合同専門家会議報告書、2001)

■消費者の心理(認知)の考慮

不確実性の下では、認知にズレ

※ 将来を予測するときのデータが乏しい状態

<u>客観的なリスクと、人々(非専門家)が認知するリスクのズレ</u>

▶ ヒューリスティクス: 目立つ情報、負の情報への注目

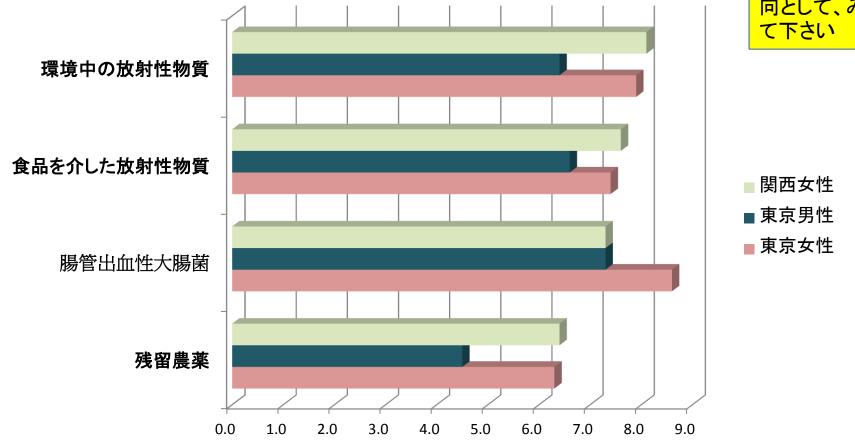
データの有意性への注意の欠落

> 食品安全: 「確率」は苦手、「重篤度」に傾斜

「用量一反応」の認識は苦手(「少しでも危険」)

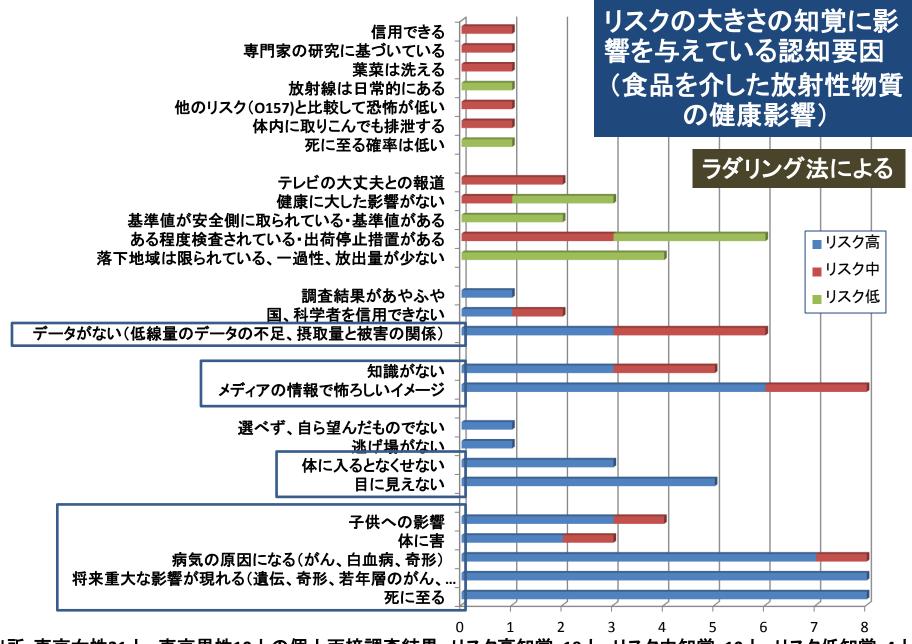
「リスク」: 食品中に危害因子があることによって、健康に悪影響が発生する確率と重篤度 (Codex)

リスクコミュニケーション調査の実施状況

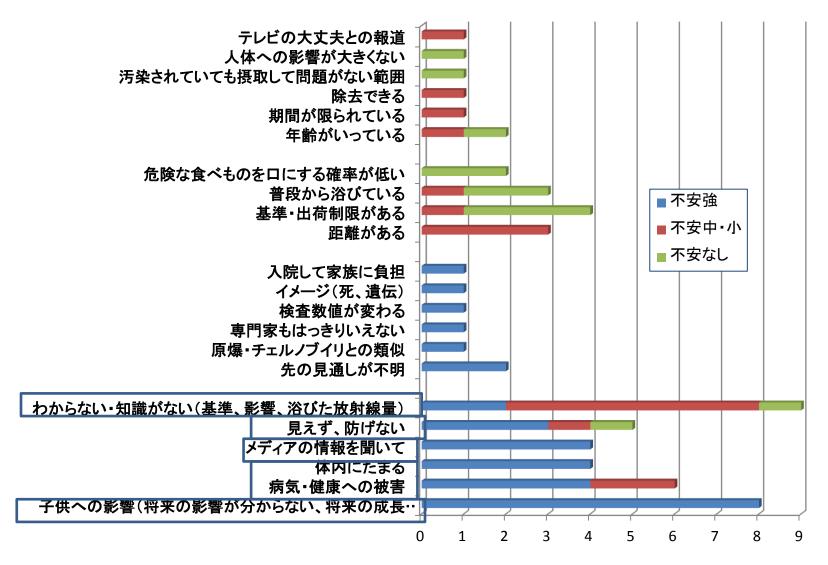

■実施プラン

- 1. 第一回情報提供内容作成
- 2. 第一回調査・情報提供
 - (1) 面接調査 (リスク知覚要因、不安の度合い・内容、必要な情報)
 - (2) 第一回情報提供
 - (3) グループディスカッション
- 3. 第二回情報提供内容作成(グループディスカッションで出された疑問について)
- 4. 第二回調查·情報提供
 - (1) 第二回情報提供
 - (2) グループディスカッション
 - (3) 専門家との質疑(半数のグループ)
 - (4) 事後面接調査(役だった情報)、アンケート(役だった情報など)
- ■参加対象と実施日 (子供を持つ親 50人)

東京女性 6月2日、7月22日 7人×3グループ(第一回21人、第二回21人) 東京男性 7月2日、8月6日 6人×2グループ(第一回12人、第二回10人) 関西女性 6月4日、8月3日 6人×3グループ(第一回18人、第二回13人)



以下、数値 はあくまで傾 向として、み て下さい


出所:44人の質問紙調査(東京女性:21人、東京男性10人、関西女性13人)

「リスク」とは: 食品中に危害因子があることによって、健康に悪影響が発生する 確率と重篤度 (Codex定義)

出所:東京女性21人、東京男性10人の個人面接調査結果。リスク高知覚:19人、リスク中知覚:10人、リスク低知覚:4人

不安の理由(食品を介した放射性物質の健康影響)

出所:東京女性21人、東京男性10人の個人面接調査結果。不安強:19人、不安中:6人、不安なし:7人

リスク認知、不安の要因のまとめ

ロ危害因子・リスクの特性にかかわる認識

- ▶病気、死に至る原因になる
- ▶将来に重大な影響が現れる(とくに子供の将来)
- ▶体に蓄積する
- ▶目に見えない
- ▶データが欠如している(低線量、摂取量と被害の関係)

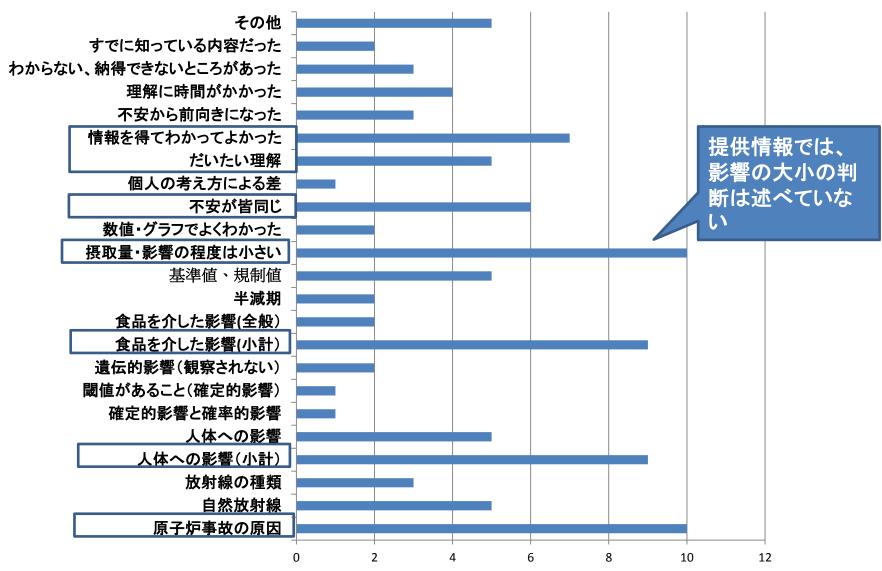
口個人の状態、社会的な状態

- ▶わからない、知識がない
- ▶メディアの情報で、怖ろしいイメージをもつ

第一回情報提供内容

1. 福島第一原子力発電所事故について

- ① 事故の概要
- ② 原子炉の仕組み
- ③ 自動停止後の冷却の必要性
- ④ 水素爆発に至る経緯
- ⑤ 炉心溶融について
- ⑥ 現在の状況


2. 放射性物質が人体におよぼす影響に ついて

- ① 日常生活のなかの放射線
- ② 放射線の種類と性質
- ③ 放射線の人体への影響
 - ・ 影響の現れ方の種類
 - ・ 影響の現れ方
 - ・ 確率的影響のメカニズムと程度

3. 食品を介した放射性物質の人体への影響とその規制基準

- ① 飲食物中の放射性物質
- ② 食品の摂取による人体への影響に対する規制基準
 - 食品に含まれる放射性物質 の規制基準の考え方
 - 具体的な規制値の算定
 - 暫定規制値のレベルを確かめる

第一回目の情報提供により理解が進んだことは何か

出所:44人のアンケート調査(東京女性:21人、東京男性10人、関西女性13人)

©京都大学農学研究科 新山陽子

第一回グループディスカッションの概要

■ わかったこと、新たに知ったこと

- 1. 原子炉の仕組みは今までよりよくわかった
- 2. 自然放射線を受けていること 食物からも、一定量は、普段でも摂取していること
- 3. 確定的影響、確率的影響 確定的影響に閾値があることは、今回、初めて聞いた
- 4. DNAの修復は、今回、初めて聞いた
- 5. 低線量の影響は、たいしたことはないとわかった → 子供に遅れて現れる影響(疑問点)
- 6. 食品を摂取しても、日頃食べている量では、影響がでないことがわかった
 - → 検査の状態、摂取する食品の放射線量(疑問点)
- 7. 全体的に、<u>まとまった情報</u>をもらったのは初めて

■ 疑問点

- 1.【原子炉事故の収束の見通し】
- 2. 【どのようなデータをもとに健康への影響の判断がされているのか、根拠データ は十分なのか 】

チェルノブイリや原爆の影響だけではデータが少ないのではないか。「遺伝的影響は観察されていない」ことも、認定されなかった人、隠した人など、データに含まれていない人があるのではないか。

- 3. 【 遅れて現れる影響があるのではないか/ 確定的影響、確率的影響 】 子供たちが青年期になったとき、遅れて現れる影響がないかが不安。
- 4.【実際の総被曝線量】

食品を介した内部被曝だけでなく、飲み水・呼吸、さらに外部被曝を、すべてあわせて、これまでにどれくらい被曝しているのか。許容量に対してどの程度のレベルなのか知りたい。

5.【放射性物質の被爆が続いたときの体内への蓄積/被曝線量の影響】

半減期はあってもゼロにはならないので、放射性物質は体内に蓄積し、被ばく線量は増えていくのではないか。1年間の被曝量は100mSv以下でも、蓄積していけば、許容量を超えるのではないか。

6. 【広島・長崎の被爆経験、チェルノブイリ原子力発電所事故の影響から分かること、今回との違い】

過去にはどれくらい放射線を浴びていて、そのような影響がでたのか、でなかったのか。今回とはどう違うのか。比較の情報が欲しい。

7.【検査体制・検査方法】

どのような検査機関があり、どのように検査しているのか(全量かサンプルか)。 検査の信頼性はどうなのか。放射線量の値が変化していたり、地域によって違 うので、検査されても一部にとどまるのではないか。

8. 【 医療・治療体制、治療の可能性 】

こうなっても、こう治せる、こういう対応をする、こういう研究をしていく、ということを知らせて欲しい。

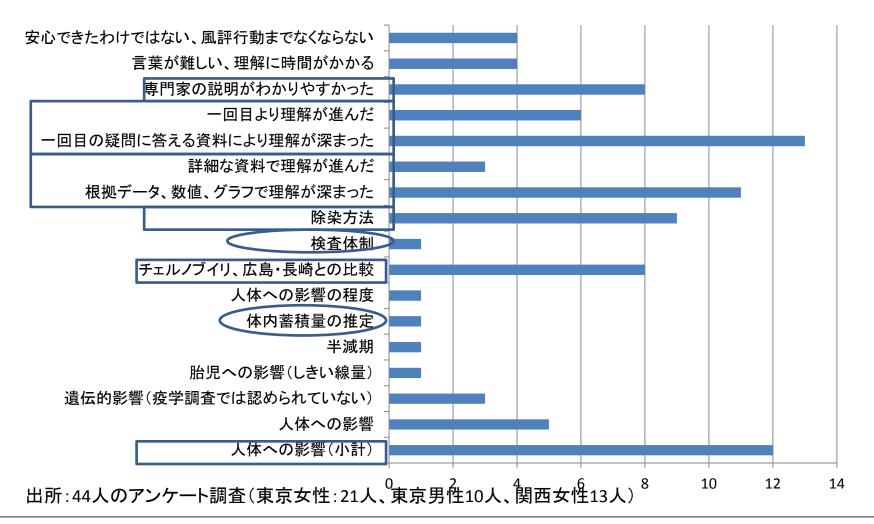
9. 【生活へのアドバイス】

よりリスクを減らすために、家庭でできる生活へのアドバイスが欲しい。

第二回情報提供内容

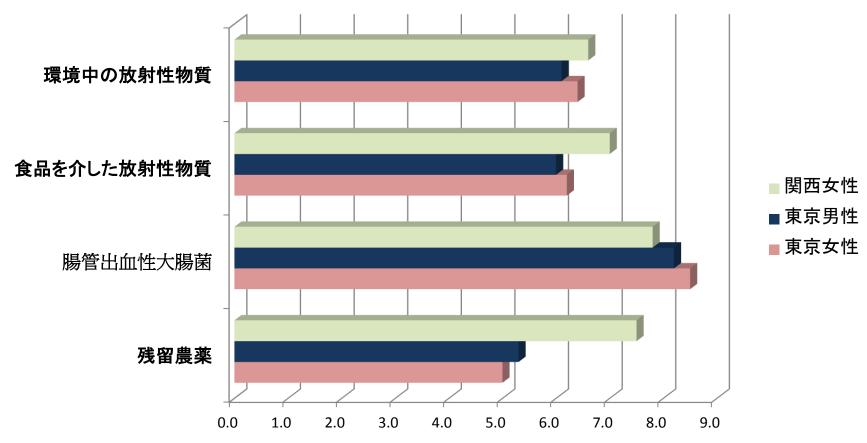
- I 放射線が人体に及ぼす影響について
 - 1)分析の根拠データ:主な放射線疫学データ チェルノブイリ原子力発電所事故被爆者、マヤック核施設労働者 広島と長崎の原爆被爆者
 - 2)影響の現れ方(とくに、確率的影響、遺伝的影響について)
 - ① 放射線の人体への影響
 - ② 放射線によるDNAの破壊と修復
 - ③ 放射線による確率的影響
 - ④ 放射線によるガンの増加
 - ⑤ 100mSvの被ばくによるがん死亡率の増加
 - ⑥ 胎児への影響としきい線量
 - ⑦ 放射線の遺伝的影響 (過去の疫学調査では認められていない、研究継続中)
 - 3)放射性物質からの総被ばく線量と累積被ばく線量
 - ① 1年間に自然界から受ける放射線
 - ② 人が受ける放射線
 - ③ 放射性物質の農作物への主な吸収経路
 - ④ 体内に取りこまれた放射線の半減期

- ① 実効半減期による放射性物質の変化
- ② 放射線量の算出
- ③ 環境放射能水準調査
- ④ 1年間に受ける総放射線量(例)/推計方法


Ⅱ 過去の事例

- 1)広島・長崎の原爆と健康影響
 - ① 爆心地からの距離と受けた線量の関係
 - ② 推定死亡者・負傷者、早期影響、後影響
- 2)チェルノブイリ原子力発電所事故による被害
 - ① チェルノブイリ原子力発電所事故との比較
 - ② チェルノブイリ原子力発電所事故の被害

皿 検査体制、除染方法


- ① 検査体制の考え方
- ② 測定・分析方法
- ③ 検査機関・対象品目
- ④ 食品(野菜)の放射性物質の検査計画、検査の実施状況
- ⑤ セシウム除去のメカニズム
- ⑥ 放射性物質の食品からの除去方法

第二回目の情報提供により理解が進んだことは何か

- ▶ 理解が深まったこと: 「人体への影響」、「チェルノブイリ・広島長崎との比較」、「除染方法」 cf. 「体内蓄積量の推定」、「検査体制」の説明は、納得のいくものでなかったか
- ▶ コミュニケーション方法の工夫(根拠データ・数値の提示、疑問に答える資料作成): 理解を助はた

<u>危害因子別にみたリスクの大きさの知覚</u> (コミュニケーション後)

出所:44人の質問紙調査 (東京女性:21人、東京男性10人、関西女性13人)

- ▶ 放射性物質のリスク知覚度合いは、東京・関西、東京男女とも、当初より低下
- 他の危害因子のリスク知覚度合いは、東京女性を除き、わずかに上昇

コミュニケーション前と後でのリスクの大きさ知覚の変化

	リスクの大きさの知覚(平均)						
	初期	後	変化				
東京女性	7.9	6.4	-1.5				
東京男性	6.4	6.1	-0.3				
関西女性	8.1	6.6	-1.5				
平均/合計	7.5	6.4	-1.1				

	リスクの大きさの知覚(増減度別人数)					会加安粉
•	+3>	+2, 1	0	-1,2	<-3	参加者数
東京女性		3	4	7	6	20
東京男性	2	1	1	4	2	10
関西女性		2	3	4	4	13
合計	2	6	8	15	12	43

出所:44人の質問紙調査 (東京女性:21人、東京男性10人、関西女性13人)

- ▶ 平均でみると、リスク度合い知覚は低下
- ▶ 個人レベルでみると、リスク度合い知覚が低下した人が多いが、高くなった人もある
 - → 情報は大方の人に、リスク度合いを低く知覚する方向で受け止められた
 - ディスカッションを交えても、情報の受け取り方は同じではない

理解につまづいているところ(調査結果より)

1.「確定的影響」と「確率的影響」

およその違いは理解したものの、わかりにくいかったところ

- ▶ 確率的影響の意味・・・少量の放射線を浴びた場合のリスク(可能性)
- ▶ 100mSv以下の低線量では、「影響がわからない」ということの意味 ・・・データがないの?研究されていないの?という疑問

2. 体内蓄積、実際の被ばく量をどのようにとらえればよいか

- ▶ 半減期(物理的半減期、生理的半減期)は、わかったが それでも少しずつ体に残って溜まるのでは?という疑問
- 実際の被ばくのレベルを知りたい(総被ばく線量)

3. 過去の事例との比較

広島、長崎の原爆の被ばくと健康影響の関係はデータが詳細でよくわかったが、

▶ チェルノブイリ原子力発電所事故の影響は少しわかりにくい

3. 検査体制

▶ サンプルの取り方を知りたい → 自分が食べるものが大丈夫か知りたい。

消費者の判断に必要とされる情報(調査結果より)

■事態の生じた原因、収拾の見通し

- > 原子力発電所事故の原因と経緯
- > 収拾の見通し

■健康影響の判断の基盤

- 放射性物質が健康に影響を与える生理学的メカニズム
- ➢ 被ばく放射線量と健康影響との関係 (用量ー反応)
- その根拠となるデータ (疫学データ)
- 過去の事例との異同・・・・事態の推移を考える参照基準となる(認知の特徴)
- ▶ 食品を介した健康影響のメカニズム

■現実の状態 (距離や人の感受性に応じて)

- > 放射性物質の放出状態
- > 食品汚染の状態
- > 内部被爆量、総被ばく量の推定

■事態への対応措置と実施状態

- > 基準値の考え方
- 検査の考え方、仕組み、体制
- > 出荷規制
- > 現実の実施状態

リスクコミュニケーションについて(調査結果より)

ロ 消費者の心の動き

- 認知的不協和を避ける(不安の補強材料を求める)
- 慎重さ、警戒心(丸め込まれていないか)
- ヒューリスティクス

ロ 双方向の繰り返しコミュニケーション + グループディスカッション

- 情報を多面的にとらえる
- 異なる意見、視点を知る

- ▶ より深い理解ができる
 - ▶ 自らの妥当性を確かめられる

□ 情報提供に求められること:

大切なのは、結論より、科学的な考え方、物事の原理・メカニズム、判断を導く プロセス

- 明確にコアを伝える
- 考える材料となる、整理された詳しいデータ・情報を提供する
- データソースを明確に
- 受け止め方の違いを互いに容認する(消費者と専門家、消費者同士)

□ 実施者によるコミュニケーションの目的の違い

- リスク管理者・・・・・リスク逓減措置への責任・・・根拠とともに措置の提示
- リスク評価者・・・・科学的見解とその根拠の提示
- 大学・研究機関・・・より物事の原理・カニズムの解説

本リスクコミュニケーション・調査は、科学研究費基盤(S)「食品リスク認知とリスクコミュニケーション、食農倫理とプロフェッションの確立」(新山代表)および、消費者庁の委託研究により、実施しました。工藤春代、鬼頭弥生との共同研究です。

提供情報内容の作成、面接調査の実施にあたり、放射線医学総合研究所、消費者庁、科学研究費メンバー他、ご協力いただきました皆さまにお礼申し上げます。